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Thermal averages for the harmonic oscillator: an extension of 
Bloch’s ‘second’ theorem 

Yizhong Fan and Bernard Goodman 
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA 

Received 14 February 1986 

Abstract. The thermal average of exp{f(q,p)} is given by Bloch’s ‘second’ theorem when 
f is an arbitrary linear function of 9 and p .  Formulae are presented here for when f is a 
quadratic form. In contrast to linearf, there are different cases to be considered depending 
on the coefficients of the quadratic form. A new complete orthonormal set of functions 
proves useful in evaluating the averages and is given in the appendix. 

1. Introduction 

A frequently encountered average in the scattering of waves in condensed systems is 
the average ( )o of the operator exp(a,b + a2b+) taken with respect to the thermal 
equilibrium distribution of a simple harmonic oscillator at temperature T = ( k , P ) - ’ .  
It is given by Bloch’s ‘second’ theorem [ l ] :  

(exp(alb+a2b’)o=exp{~((a,b+a2bc)2)o} =exp{fa,a2 coth(P/2)}. (1) 
The oscillator frequency w has been set equal to one, and 

b = q + ip) b+ = 2-”2( q - ip) 

are boson operators, while a , ,  a, are arbitrary coefficients. In this paper we derive 
parallel formulae for the harmonic average of quadratic exponentials. In the derivation 
use is made of an apparently new complete orthonormal set of functions which are 
the eigenfunctions of the operator 

Y = q p + p q .  (2) 
The particular average (exp{iAp})o appears in the small-polaron problem as a 

renormalisation factor, after a canonical transformation, multiplying the matrix element 
for the hopping of an electron between neighbouring sites in the presence of linear 
coupling ( X q )  to a phonon mode [2]. The average, (expik2)o, arises in a similar 
manner when the coupling is quadratic, i.e. X q 2  [3]. 

2. Quadratic forms 

The general form of second order in b and b’ is a linear combination of the following 
three Hermitian operators: 

U = $( b’b + bb’) = f ( q 2 + p 2 )  

V ,  = ( 1/2i)(b2- b”) = t ( q p  + p q )  = $2 
v, = $( b2+ b’2) = f( q 2  - p 2 ) .  

( 3 a )  
(3b) 
(3c) 
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The first is the oscillator Hamiltonian ( w  3 1). It has a discrete spectrum and is bounded 
from below, while the other two are unbounded both above and below with continuous 
spectra consisting of the entire interval (-00, 00). Therefore, unlike in equation ( l ) ,  
restrictions must be imposed on the coefficients in the second order form: 

Q(u‘,  b;, b ; )=~’U+b;Vl+b;V,  (4) 

in order for the average (exp Q)o to exist. We will assume in what follows that the 
ratios a ’ :  bi : b; are real and will write 

Q(a,  U, b , ,  b,) = - a ( a U  + b, Vi + b2VZ) (4‘) 

where a, b, and b2 are real; a 3 0 and la I = 1. 
The operators (3) have the commutators 

[ U, VI] = 2i V2 

[VI, V,] = -2i U 

[U, V,] = -2i VI. 

These are the same as for the generators of the Lorentz group in 2+1  dimensions, 
with U/2 generating the 2-space rotations and VJ2, V2/2 generating the Lorentz 
‘boosts’. They form an invariant 

v:+ v:- U’=:  ( 6 )  
under the rotation and boost operators 

3. Calculations 

The average of exp Q has the form 

(exp Q)o = 2 sinh(P/2)1 

where 

I =Tr{exp(-PU) exp Q }  
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and 

2 sinh(p/2) = (Tr exp(-pU))-’. 

Through use of the rotation equation (8a),  the coefficient of either V, or V2 in Q may 
be made zero so that either 

Q’= - a ( a U +  bV,) (1 la )  
or 

Q”= - a ( a U +  bV,) 

= -a [ ( a -b )p2+(a+b)q2] /2  (1lb)  
may be used in (10) without changing its value, where b = *(b:+ b:)’/’ in ( l l a )  and 
(1 1 b), respectively. The form multiplying a in Q” is clearly bounded from below when 
a > (bl and unbounded on both sides for a < Ibl. These two cases will be considered 
separately. 

3.1. a> /b /  

0’’ = -a (cp2 + dq2)/  2 

where c = a - b, d = a + b are both positive. The trace will be evaluated in coordinate 
space, so that 

= I dq, dq2(qll exp(-PU)lq2)(q21 exp[-a(cp2+ dq2)/2Ilql). (13) 

Feynman’s book on statistical mechanics [4] gives (equation (2-83)) the following 
expression for the density matrix of an oscillator of mass m and frequency U :  

(XI1 exp[-P(p%m + m~2X2/2)llX2) 

= (27rh sinh(phw) 

With appropriate substitutions of the above into the two integrand factors in equation 
(13) we obtain the integral 

Z = ( d / ~ ) ’ / ~ ( 4 . r r ~ s i n h  p sinh ( ~ p ’ ) - l / ~  dq, dq, exp[-fK(q:+q:)- Lq,q,] (15) I 
where p ‘ =  ( c d ) ’ / *  and 

K =cothp+(d/c)”2coth(apf )  
1/2  1 1 

sinh p sinh( ap’) 
are, in general, complex through a. The conditions for convergence of a multiple 
Gaussian integral with a complex coefficient matrix A are given in appendix 2. For 
the above case, they are 

R e K a O  (Re K)’-(ReL)’aO 
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and 

det A = ( K 2 -  L2) # 0. 

Then the integral in (15) is given by the familiar form 

(4r2/det  A)''' 

with the result that 

I = { [ ( ~ / d ) ' / ~ + ( d / c ) ' / ~ ]  s inhp  sinh(apf)+2[cosh p cosh(ap')-1]}-1'2. (19) 
There is a symmetry with respect to p and ap' because of the oscillator form of 0'' 
in (12), namely Q"= -ap'U(q' ,p ' ) ,  with q'= (d/c)'"q and p ' =  (c/d)'/"p. Special 
cases of equation (17) may be noted as follows. 

(i) c = d ( = a )  a n d p + a R e a > O :  

Z = Tr{e-BU e-""U} = (2 sinh[(p + aa)/2]}-'. 

(ii) c =  0: 

Z = Tr{e-BU exp( --Eq2)} = 2-"2( E sinh p +cosh p - 1)-1'2 

as long as p +; Re E 2 0. The case d = 0 is the same, so that 

(exp( - E q 2 ) ) o  = (exp( - ~ p ~ ) > ~  = (1 + E coth p/2)-1/2. (20) 
(iii) a pure imaginary, say, a OC ir. Since c and d in equation (12) define the 

Hamiltonian kZh  for an oscillator with different mass and frequency ( c / d  = 
( mw/m'w')2), equations (9) and (19) give a hybrid quantity, namely the thermal average 
with respect to Ho (m, w) of the time evolution operator belonging to Hh(m', w'): 

(exp(-itHh/h)),= cos w't-2(1 -cos w't)no(no+ 1) 

1 -' +i(?+-)(n,+f) m'w' sin w' t  
m u  mw 

where no = (eS"" - 1)-' and all the dimensional quantities are shown explicitly. 

3.2. a < /b/ 

This is more involved than the previous case because Q" in equation (1 1) now has the 
character of V,. Using the boost transformation (8b), with 
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Writing y, which is real and positive, as y = m'/ m shows that fiwU( 7 )  is the Hamil- 
tonian for an oscillator of the same o as U but different mass. Then 

where q1 and q2 are dimensionless. Transcribing the first matrix element above from 
equation (14) gives 

The second matrix element needs a little more work. It proves expedient to rewrite it 
first in terms of the corresponding matrix elements of VI which are derived in appendix 
1. Because of the two-sided unboundedness of VI, it is necessary to restrict a to be 
pure imaginary, 

ab '  = i T  T real (26) 

so that a = i sgn T. The result is quasidiagonal in q :  

(ql exp(-i.rV,)Jq')= S ( q  e-T/2-qre'/2). 

Since the rotation R(n /2 )  in equation ( S a )  gives V2(77/2) = VI, we obtain 

( 921 exp( i 7- V2) I 4 1 ) 

= dq dq'(q21 exp(-i.rrU/4)1q)(q'1 exp(i .rr~/4)1q,)  e'/26(q - q' e') 

= (2ni sinh T ) - ' / ~  exp{$[(q:+ 4:) coth T - (2q2ql/sinh T)]}. (28) 
This has the same form as (25) except for replacing y by -i, but still retaining the 
hyperbolic functions. In comparison, the more familiar time evolution operator for an 
oscillator has trigonometric functions: 

(29) (q21 e-""lq,) = (2ni sin T ) - ' / ~  exp{fi[(q:+ 4:) cot T - (2q2ql/sin T ) ] } .  

Motion in the inverted potential -q2/2 in V2 is characterised by the real exponentials 
in equation (28). These also appear in equation (27) which involves a n / 4  rotation 
of the phase space. (Equation (28) can be derived, without reference to VI, by direct 
integration of the time dependent Schrodinger equation for the left-hand member of 
equation (28) following the procedure in 0 2.5 in reference [4] for the Bloch equation 
( a p / d p )  for the harmonic oscillator density matrix.) 

Inserting (25) and (28) into equation (24) and using (18) gives 

Z=[2(coshP c o s h ~ - l ) + i ( y - y - ' ) s i n h p  s i n h ~ ] - ' / ~ .  (30) 

(exp(*i~V,)), = (exp(*i.rV,)),= sinh(p/2)(cosh p cosh T -  l)-1'2. (31 )  

(32) 

For the special case a = 0, y is unity and 

The VI form is significant because the operator 

exp(i~V,)  = exp[T(b2- b'2)/2] = L(2T) 

produces the Bogoliubov transformation of the boson operators, i.e. 

b cosh T - b' sinh T 

- b sinh T + b' cosh T 
(33) 
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which mixes b and bi, while maintaining canonical commutation relations. The 
averages (31) give a (mean-field) renormalisation factor for electron hopping in the 
case of an interacting phonon-electron system with coupling proportional to q2 [ 31. 

Finally, we record equations (19) and (30) in terms of the original set of coefficients: 

I ( a ,  a, 61, b2; B )  
= Tr{exp( - p  U) exp[ -a ( a U  + bl VI + b2 VJl) 

a+(b:+ b:)1’2)1/2+( a-(b:+b$)’li)”*] 
= { [ ( a  -(b:+ b:)’12 a + (b: + b:)l12 

x sinh p sinh[ a (a2  - b: - b:)‘”] 

+2(~0sh  p cosh[a(a2- b:-b:)1/2]-1} (34) 

when a < (b: + b$)’I2 and a = ki. The coefficients a, bl , b2 are real and a 3 0 in both 
cases. 

Appendix 1. The eigenfunctions of V, =kqp+pq) 

The eigenvalue equation in q is 

V,4(q)  = -i(q d l d q + M q )  = d q ) .  ( A l . l )  
This has normalisable solutions, in the continuum sense, of the form 

4(q) = c exp(z Inlql) = Clql-”2 exp(iu InJql) (A1.2) 
where 

and U is any real number. In checking (A1.21, the condition q6(q) = O  is used. The set 

2 = iu -1 2 

& ( q )  = (2T ) - ’ / ’ e (q )  exp(z(u) In q )  

# ; ( q )  = ( 2 T ) - 1 W - q )  exp(z(v) W-q))  (A1.3) 

(A1.4) 
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m 

- -L 8O I du exp(iu ln(q/q')) exp(-abu) 
2T / q q y 2  -m 

(A1.6) 

where la[ = 1 and b > 0. 
Convergence of the integral requires a b  to be pure imaginary. Setting a b  = i7 gives 

= eTl2S( q - q' e'). (A1.7) 

Thermodynamic integrals like Tre-@" do not exist for V, and V, because of their 
negative unbounded spectrum. 

Appendix 2. Gaussian integrals with complex matrices 

We consider the multivariate infinite integral 

Z(A) = d"q exp{-qTAq} (A2.1) 

where the qi ,  i = 1, . . . , n, are real variables. When the matrix A is real (A2.1) converges 
if A is positive, i.e. all its eigenvalues are greater than zero, and then 

I 
Z(A) = ( r " /de t  ('42.2) 

A = B + i C  ('42.3) 

We derive here the 'almost well known' generalisation for when A is complex, i.e. 

where B and C are real symmetric matrices. The necessary and sufficient conditions 
for convergence of (A2.1) are that 

( i )  d e t A f O  (A2 .4~)  

(ii) Re A be non-negative (eigenvalues 2 0). (A2.4b) 

In particular, the case where det B = 0 (a zero eigenvalue) seems not so well known. 
Clearly any non-zero eigenvalue of B must be positive. If all eigenvalues are non-zero 
( B  positive), then B and C can be simultaneously diagonalised by an (in general) 
non-orthogonal real transformation with matrix A [ 51, giving 

qTAq=XT(E+iI ' )X 

The resulting integral (A2.1) is 

Z(A) = ldet A(P"'* n (1 + i n )  Cl 
= (rr"/det A)'/' 
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where (det AI is the Jacobian factor. If all eigenvalues are zero ( B  = 0), the eigenvalues 
cj of C determine the integral, which exists and is again given by (A2.6) iff no cj 
vanishes (det A # 0). In both cases the conditions (A2.4) obtain. 

If B has no zero eigenvalues ( O <  no< n), the original quadratic form can be 
transformed by some A' matrix to the form 

(A2.7) 

where x and y are vectors in zero and non-zero eigenvalue subspaces of B, respectively, 
c,, cy are corresponding diagonal submatrices of C and C' is real. In the y integrations, 
if done first, the finite displacement 

y+y '=y+ iD- 'C 'x  (A2.8) 

will not change the result. The effect of (A2.8) is to replace the matrix in equation 
('42.7) by 

A'=[". O D  '1 A2 = B2+iC2 (A2.9) 

with B2 and C2 real and 

B 2 -  = (D- 'C' )+D-'C'  (A2.10) 

is non-negative. 
Since the displacement (A2.8) corresponds to row and column operations on the 

determinant of the matrix in equation (A2.7), the determinant of A' has the same value. 
(Note that (A2.8), being complex, can produce a positive matrix B2 although B has 
zero eigenvalues.) 

The matrix A2 can be treated in the same manner as was the original A, etc, until 
eventually a diagonal n x n matrix A'" is reached which has either the form, A, = 
E, +C, ,  or the form A,, comprised of diagonal submatrices ir , ,  and En-,,,+irn-n,. 
The a form leads, as did (A2.5), to the value (A2.6) and the p form does likewise iff 
all the diagonal values in T n r  are non-zero (det A # 0). 

Finally we remark on the convergence of integrals like (A2.1) when the q are also 
complex. Gaussian integrals in so-called holomorphic variables occur in functional 
integrals of field theory [ 6 ] .  The standard result given is 

where zk = xk + iyk and ZZ = Xk - iyk and 
dz*dz d x d y  I n i = J 7  

(A2.11) 

(A2.12) 

The matrix A is in general not symmetric (see, e.g., equation (2.25) of reference [ 6 ] ) .  
The integral (A2.11) is equivalent to a 2n-fold real integral (A2.1). The quadratic form 
in the real quantities xk and yk has the (symmetric) matrix 

(A2.13) 

where As = A + AT and A, = A - Ar. In terms of A the conditions (A2.4) for A' become 

(i) det A#O 
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( i i )  A + A+ is non-negative. 
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(A2.14) 
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